DETEKSI KERETAKAN JALAN ASPAL MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK

Authors

  • ari Wibowo universitas subang
  • yusuf yulianto Teknik Sipil Universitas Subang

DOI:

https://doi.org/10.51988/jtsc.v4i2.132

Keywords:

Asphalt Road Conditions; Road Crack Detection; CNN

Abstract

Road conditions determine the comfort of road users, the comfort of these road users is the responsibility of the Public Works and Spatial Planning Office in each region. Roads are of course an important aspect because roads are the main supporting factor in the social, cultural, environmental fields which are developed in order to achieve an equitable distribution of development between regions and sustainability with regional and economic development approaches. The first step that must be taken by policy makers in seeking comfort for users is to evaluate the quality of roads, including in Indonesia. The evaluation in question includes estimating repairs, required construction, estimating quality. The strategic step in making road quality evaluation steps is to detect road cracks on the surface. One of them is by implementing an intelligent system method in detecting road damage using the Convolutional Neural Network (CNN) algorithm. The input is an image of the road surface in RGB format. The image is obtained from kaggle as many as 2074 images. Based on the results of the tests and evaluations that have been carried out, it can be concluded that the system built has succeeded in producing very good data as evidenced by an accuracy rate of 92.9%.

References

Departemen-pekerjaan-umum (1995), Manual Pemeliharaan Rutin untuk Jalan Nasional dan Jalan Provinsi, Jilid Ii: Metode Perbaikan Standar, Departemen Pekerjaan Umum Direktorat Jendral Bina Marga Direktorat Bina Teknik.

Idestio, B.D., Agung, T., dan Wirayuda, B. (2013), ‘Pengukuran Luas Lubang Jalan Berbasis Data Video Menerapkan Threshold-Based Marking dan GLCM’, INKOM, Vol. 7, No. 2, p. 235, November 2013, DOI:https://dx.doi.org/10.14203/j.inkom.235.

Mahardika, A., Sari, Y. A., dan Dewi, C. (2018), ‘Sistem Temu Kembali Citra Lubang Jalan Aspal Berdasarkan Tingkat Kerusakan Menggunakan Ekstraksi Fitur Gray Level Co-Occurrence Matrix’, Jurnal Pengembangan Teknologi Informasi Dan Ilmu Computer, Vol. 2, No. 10, p. 3811-3821, ISSN 2548-964X, Februari 2018.

Peraturan pemerintah nomor 34 tahun 2006 tentang jalan (lembaran negara republik indonesia tahun 2006 nomor 86, tambahan lembaran negara republik indonesia nomor 4655.

Regitha, F., et al. (2018), ‘Rekomendasi Prioritas Perbaikan Jalan Dengan Metode AHP-SAW-TOPSIS (Studi kasus: Dinas Pekerjaan Umum Dan Penataan Ruang Kota Malang)’, Jurnal Pengembangan Teknologi Informasi Dan Ilmu Computer, Vol. 3, No. 3, p. 2960-2969, ISSN 2548-964X, Januari 2019.

Setiadi, E., dan Wibowo, A. (2023), ‘Klasifikasi dan Deteksi Keretakan pada Trotoar Menggunakan Metode Convolutional Neural Network’, JTSC, Vol. 4, No. 1, pp 412-427, Februari 2023, DOI:https://doi.org/10.51988/jtsc.v4i1.116.

Rahmawati, R., Pangesti, R. D., dan Abdillah, R. A. (2021), ‘Pemetaan Kondisi Jalan Berdasarkan IRI Roadroid Di Kabupaten Gresik Wilayah Selatan’, Jurnal Riset Rekayasa Sipil, Vol. 4, No. 2, Maret 2021, DOI : https://doi.org/10.20961/jrrs.v4i2.44230

Yudaningrum, F., dan Ikhwanudin (2017), ‘Identifikasi jenis kerusakan jalan (studi kasus ruas jalan kedungmundu-meteseh)’, Teknika, Vol. 12, No. 2, p 16-23 DOI: https://doi.org/10.26623/teknika.v12i2.

Putra, W.K., Nurdin, A., Bahar, F.F. (2022), ‘analisis kerusakan jalan perkerasan lentur menggunakan metode pavement condition index (PCI)’, Jurnal Teknik, Vol. 16, No. 1, pp. 41-50, April 2022.

Qotrunnada, F. M., dan Utomo, P. H. (2022), ‘Metode Convolutional neural network untuk klasifikasi wajah bermasker’, PRISMA, Prosiding seminar nasional matematika, Vol. 5, pp. 799-807, Retrieved from https://journal.unnes.ac.id/sju/index.php/prisma/article/view/54602.

Moolayil, J.,J. (2019), Learn keras for deep neural networks: A fast-track approach to modern deep learning with python. British columbia: Apress.

Zufar, M. Dan Setiyono, B. (2016), ‘Convolutional neural network untuk pengenalan wajah secara real-time’, Jurnal Sains dan Seni ITS, 2337-3520.

Anisarida, A. A., Hafudiansyah, E., & Kurniawan, E. (2020). Perencanaan Tebal Perkerasan Ruas Jalan A Di Kabupaten Lebak. Jurnal Teknik Sipil Cendekia (JTSC), 1(1), 1-14.

Hernawan, H., & Anisarida, A. A. (2022). ANALISIS FAKTOR PENYEBAB KECELAKAAN RUAS JALAN LIMBANGAN MALANGBONG KABUPATEN GARUT. JURNAL TEKNIK SIPIL CENDEKIA (JTSC), 3(2), 353-358.

Anisarida, A. A., Prabowo, S., & Seran, E. N. B. (2023). METODE MEKANISTIK-EMPIRIS UNTUK MENGEVALUASI TEBAL PERKERASAN LENTUR MENGGUNAKAN PROGRAM (STUDI KASUS: JALAN CIBADAK-CIKIDANG-PELABUHAN RATU). JURNAL TEKNIK SIPIL CENDEKIA (JTSC), 4(1), 554-569.

Rusmayadi, D., & Anisarida, A. A. (2021). ANALISIS KINERJA JALAN MOHAMMAD TOHA DENGAN ATAU TANPA MARKA JALAN. JURNAL TEKNIK SIPIL CENDEKIA (JTSC), 2(1), 152-181.

Setiawan, F., & Janizar, S. (2021). Percepatan Jadwal Konstruksi dan Pengaruhnya Terhadap Biaya Penyelesaian Proyek Konstruksi. JURNAL TEKNIK SIPIL CENDEKIA (JTSC), 2(1), 90-126.

Downloads

Published

2023-07-26

Issue

Section

Articles