OPTIMALISASI KUAT TEKAN BETON GEOPOLIMER MENGGUNAKAN FLY ASH DAN ABU SEKAM PADI
DOI:
https://doi.org/10.51988/jtsc.v6i2.286Keywords:
Compressive strength, Fly ash, Geopolymer concrete, Rice husk ash, Sustainable construction, WorkabilityAbstract
Concrete is a widely used construction material, but its environmental impact, particularly the CO? emissions, has led to the search for more eco-friendly alternatives. Geopolymer concrete, utilizing fly ash and rice husk ash as binders, presents a promising alternative to conventional concrete. This study aims to investigate the effect of varying the composition of fly ash and rice husk ash on the mechanical properties and workability of geopolymer concrete. The mix variations used consisted of fly ash and rice husk ash ratios of 100:0, 80:20, 70:30, and 50:50, with an alkaline activator solution of 12M NaOH and Na?SiO? in a 1:2.5 ratio. The results showed that the 100% fly ash mix produced the highest compressive strength of 23.13 MPa and a slump value of 8.0 cm, indicating good performance in both strength and workability. On the other hand, increasing the rice husk ash proportion led to a decrease in compressive strength and slump, with the lowest values observed at the 50% rice husk ash mix, which resulted in a compressive strength of 17.20 MPa and a slump of 5.5 cm. Based on these results, it can be concluded that fly ash remains the superior binder for geopolymer concrete, while rice husk ash can be used in controlled proportions to support environmental sustainability. Further research is recommended to explore the use of other additives and conduct microstructure analysis to enhance the performance of geopolymer concrete.
References
Abdulkareem, O. A., & Ramli, M. (2015). Optimization of Alkaline Activator Mixing and Curing Conditions for A fly Ash-Based Geopolymer Paste System. Modern Applied Science, 9(12), 61. https://doi.org/10.5539/mas.v9n12p61
Amran, M., Debbarma, S., & Ozbakkaloglu, T. (2021). Fly ash-based eco-friendly geopolymer concrete: A critical review of the long-term durability properties. Construction and Building Materials, 270, 121857. https://doi.org/10.1016/j.conbuildmat.2020.121857
Bhatt, A., Priyadarshini, S., Acharath Mohanakrishnan, A., Abri, A., Sattler, M., & Techapaphawit, S. (2019). Physical, chemical, and geotechnical properties of coal fly ash: A global review. Case Studies in Construction Materials, 11, e00263. https://doi.org/10.1016/j.cscm.2019.e00263
Chen, S., Ruan, S., Zeng, Q., Liu, Y., Zhang, M., Tian, Y., & Yan, D. (2022). Pore structure of geopolymer materials and its correlations to engineering properties: A review. Construction and Building Materials, 328(February), 127064. https://doi.org/10.1016/j.conbuildmat.2022.127064
Chiranjeevi, K., Vijayalakshmi, M. M., & Praveenkumar, T. R. (2023). Investigation of fly ash and rice husk ash-based geopolymer concrete using nano particles. Applied Nanoscience (Switzerland), 13(1), 839–846. https://doi.org/10.1007/s13204-021-01916-2
de Souza Rodrigues, C., Ghavami, K., & Stroeven, P. (2006). Porosity and water permeability of rice husk ash-blended cement composites reinforced with bamboo pulp. Journal of Materials Science, 41(21), 6925–6937. https://doi.org/10.1007/s10853-006-0217-2
Detphan, S., & Chindaprasirt, P. (2009). Preparation of fly ash and rice husk ash geopolymer. International Journal of Minerals, Metallurgy and Materials, 16(6), 720–726. https://doi.org/https://doi.org/10.1016/S1674-4799(10)60019-2
Farooq, F., Jin, X., Faisal Javed, M., Akbar, A., Izhar Shah, M., Aslam, F., & Alyousef, R. (2021). Geopolymer concrete as sustainable material: A state of the art review. Construction and Building Materials, 306(August), 124762. https://doi.org/10.1016/j.conbuildmat.2021.124762
Ghazali, N., Muthusamy, K., & Wan Ahmad, S. (2019). Utilization of Fly Ash in Construction. IOP Conference Series: Materials Science and Engineering, 601(1). https://doi.org/10.1088/1757-899X/601/1/012023
Habert, G., d’Espinose de Lacaillerie, J. B., & Roussel, N. (2011). An environmental evaluation of geopolymer based concrete production: reviewing current research trends. Journal of Cleaner Production, 19(11), 1229–1238. https://doi.org/https://doi.org/10.1016/j.jclepro.2011.03.012
Hassan, A., Arif, M., & Shariq, M. (2019). Use of geopolymer concrete for a cleaner and sustainable environment – A review of mechanical properties and microstructure. Journal of Cleaner Production, 223, 704–728. https://doi.org/10.1016/j.jclepro.2019.03.051
Hossain, S. S., Roy, P. K., & Bae, C. J. (2021). Utilization of waste rice husk ash for sustainable geopolymer: A review. Construction and Building Materials, 310(August), 125218. https://doi.org/10.1016/j.conbuildmat.2021.125218
Imtiaz, L., Ur Rehman, S. K., Memon, S. A., Khan, M. K., & Javed, M. F. (2020). A review of recent developments and advances in eco-friendly geopolymer concrete. Applied Sciences (Switzerland), 10(21), 1–56. https://doi.org/10.3390/app10217838
Insyira, A. H., Wijayanti, Y., Setyandito, O., Putra, D. P., Adi Soekotjo, N., Sasongko, E., & Anda, M. (2023). Study of using Coal Fly Ash (CFA) and Rice Husk Ash (RHA) on the Compressive Strength of Geopolymer Concrete. E3S Web of Conferences, 426, 3–7. https://doi.org/10.1051/e3sconf/202342601011
Joel, S. (2020). Compressive strength of concrete using fly ash and rice husk ash: A review. Civil Engineering Journal (Iran), 6(7), 1400–1410. https://doi.org/10.28991/cej-2020-03091556
Kelechi, S. E., Adamu, M., Uche, O. A. U., Okokpujie, I. P., Ibrahim, Y. E., & Obianyo, I. I. (2022). A comprehensive review on coal fly ash and its application in the construction industry. Cogent Engineering, 9(1). https://doi.org/10.1080/23311916.2022.2114201
Matin, H. H. A., Syafrudin, S., & Suherman, S. (2023). Rice Husk Waste: Impact on Environmental Health and Potential as Biogas. Kemas, 18(3), 431–436. https://doi.org/10.15294/kemas.v18i3.42467
Mehta, A., & Siddique, R. (2016). An overview of geopolymers derived from industrial by-products. Construction and Building Materials, 127, 183–198. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2016.09.136
Mo, K. H., Alengaram, U. J., & Jumaat, M. Z. (2016). Structural performance of reinforced geopolymer concrete members: A review. Construction and Building Materials, 120, 251–264. https://doi.org/10.1016/j.conbuildmat.2016.05.088
Mounika, G., Priyanka, M., Rajasri, Y., Reddy, T. S., Srinanda, S., & Reddy, G. S. (2024). Evaluation of Mechanical Characteristics of concrete incorporating Fly Ash and Rice Husk Ash as sustainable alternatives. E3S Web of Conferences, 559. https://doi.org/10.1051/e3sconf/202455904028
Nath, P., & Sarker, P. K. (2014). Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Construction and Building Materials, 66, 163–171. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2014.05.080
Neri, A. C., Baguhin, I. A., & Cabahug, R. R. (2023). An Investigation on the Compressive Strength of Concrete with Rice Husk Ash as Cement Replacement and Addition of Chemical Admixtures. Mindanao Journal of Science and Technology, 21(1), 224–236. https://doi.org/10.61310/mndjstiect.0987.23
Olii, M. R., Hidayat, A. S., Saliko, M., Santoso, T., Hippy, M. A., & Pakaya, R. (2023). Environmentally Friendly Concrete Using Waste Glass Powder (WGP) As a Partial Substitute of Cement. Jurnal Teknik Sipil, 12(2), 140–146.
Olii, M. R., Poe, I. ., Ichsan, I., & Olii, A. (2021). Limbah Kaca Sebagai Penganti Sebagian Agregat Halus Untuk Beton Ramah Lingkungan. Teras Jurnal, 11(1), 113–124. https://doi.org/http://dx.doi.org/10.29103/tj.v11i1.407
Olii, M. R., Wahab, A. A., Ichsan, I., Djau, R. A., & Nento, S. (2023). Beton Hijau Menggunakan Fly ash sebagai Subtitusi Parsial Semen. Siklus?: Jurnal Teknik Sipil: Jurnal Teknik Sipil, 9(1), 11–20.
Part, W. K., Ramli, M., & Cheah, C. B. (2015). An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Construction and Building Materials, 77, 370–395. https://doi.org/10.1016/j.conbuildmat.2014.12.065
Pode, R. (2016). Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews, 53, 1468–1485. https://doi.org/10.1016/j.rser.2015.09.051
Ramasamy, V. (2012). Compressive strength and durability properties of Rice Husk Ash concrete. KSCE Journal of Civil Engineering, 16(1), 93–102. https://doi.org/10.1007/s12205-012-0779-2
Ramujee, K., & Potharaju, M. (2017). Mechanical Properties of Geopolymer Concrete Composites. Materials Today: Proceedings, 4(2), 2937–2945. https://doi.org/10.1016/j.matpr.2017.02.175
Raza, M. H., Khan, M., & Zhong, R. Y. (2024). Strength, porosity and life cycle analysis of geopolymer and hybrid cement mortars for sustainable construction. Science of the Total Environment, 907(September 2023), 167839. https://doi.org/10.1016/j.scitotenv.2023.167839
Risdanareni, P., Puspitasari, P., & Jaya, E. J. (2017). Chemical and Physical Characterization of Fly Ash as Geopolymer Material. MATEC Web of Conferences, 97. https://doi.org/10.1051/matecconf/20179701031
Sandhu, R. K., & Siddique, R. (2017). Influence of rice husk ash (RHA) on the properties of self-compacting concrete: A review. Construction and Building Materials, 153, 751–764. https://doi.org/10.1016/j.conbuildmat.2017.07.165
Shehab, H. K., Eisa, A. S., & Wahba, A. M. (2016). Mechanical properties of fly ash based geopolymer concrete with full and partial cement replacement. Construction and Building Materials, 126, 560–565. https://doi.org/10.1016/j.conbuildmat.2016.09.059
Shehata, N., Mohamed, O. A., Sayed, E. T., Abdelkareem, M. A., & Olabi, A. G. (2022). Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials. Science of the Total Environment, 836(April), 155577. https://doi.org/10.1016/j.scitotenv.2022.155577
Singh, J., & Singh, S. P. (2019). Geopolymerization of solid waste of non-ferrous metallurgy – A review. Journal of Environmental Management, 251(September), 109571. https://doi.org/10.1016/j.jenvman.2019.109571
Umasabor, R. I., & Okovido, J. O. (2018). Fire resistance evaluation of rice husk ash concrete. Heliyon, 4(12), e01035. https://doi.org/10.1016/j.heliyon.2018.e01035
Wan, Q., Rao, F., Song, S., García, R. E., Estrella, R. M., Patiño, C. L., & Zhang, Y. (2017). Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios. Cement and Concrete Composites, 79, 45–52. https://doi.org/10.1016/j.cemconcomp.2017.01.014
Wang, M., Chen, D., Wang, H., & Gao, W. (2024). A review on fly ash high-value synthesis utilization and its prospect. Green Energy and Resources, 2(1), 100062. https://doi.org/10.1016/j.gerr.2024.100062
Xu, W., Lo, Y. T., Ouyang, D., Memon, S. A., Xing, F., Wang, W., & Yuan, X. (2015). Effect of rice husk ash fineness on porosity and hydration reaction of blended cement paste. Construction and Building Materials, 89, 90–101. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2015.04.030
Zareei, S. A., Ameri, F., Dorostkar, F., & Ahmadi, M. (2017). Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: Evaluating durability and mechanical properties. Case Studies in Construction Materials, 7(October 2016), 73–81. https://doi.org/10.1016/j.cscm.2017.05.001
Zhao, J., Tong, L., Li, B., Chen, T., Wang, C., Yang, G., & Zheng, Y. (2021). Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment. Journal of Cleaner Production, 307(135), 127085. https://doi.org/10.1016/j.jclepro.2021.127085
Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., Yu, W. H., & Wang, H. (2016). Fly ash-based geopolymer: Clean production, properties and applications. Journal of Cleaner Production, 125, 253–267. https://doi.org/10.1016/j.jclepro.2016.03.019
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Sipil Cendekia (JTSC)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.